293 research outputs found

    On Heinz type inequality and Lipschitz characteristic for mappings satisfying polyharmonic equations

    Full text link
    For Kβ‰₯1K\geq1, suppose that ff is a KK-quasiconformal self-mapping of the unit ball Bn\mathbb{B}^{n}, which satisfies the following: (1)(1) the polyharmonic equation Ξ”mf=Ξ”(Ξ”mβˆ’1f)\Delta^{m}f=\Delta(\Delta^{m-1} f)=Ο†m=\varphi_{m} (Ο†m∈C(Bnβ€Ύ,Rn))(\varphi_{m}\in\mathcal{C}(\overline{\mathbb{B}^{n}},\mathbb{R}^{n})), (2) the boundary conditions Ξ”mβˆ’1f∣Snβˆ’1=Ο†mβˆ’1, …,Β Ξ”1f∣Snβˆ’1=Ο†1\Delta^{m-1}f|_{\mathbb{S}^{n-1}}=\varphi_{m-1},~\ldots,~\Delta^{1}f|_{\mathbb{S}^{n-1}}=\varphi_{1} (Ο†k∈C(Snβˆ’1,Rn)\varphi_{k}\in \mathcal{C}(\mathbb{S}^{n-1},\mathbb{R}^{n}) for j∈{1,…,mβˆ’1}j\in\{1,\ldots,m-1\} and Snβˆ’1\mathbb{S}^{n-1} denotes the unit sphere in Rn\mathbb{R}^{n}), and (3)(3) f(0)=0f(0)=0, where nβ‰₯3n\geq3 and mβ‰₯2m\geq2 are integers. We first establish a Heinz type inequality on mappings satisfying the polyharmonic equation. Then we use the obtained results to show that ff is Lipschitz continuous, and the estimate is asymptotically sharp as Kβ†’1K\to 1 and βˆ₯Ο†jβˆ₯βˆžβ†’0\|\varphi_{j}\|_{\infty}\to 0 for j∈{1,…,m}j\in\{1,\ldots,m\}.Comment: 28 page
    • …
    corecore